1. Consider the following pedigree:

a). What is the pedigree inbreeding coefficient F of the female shown by the solid circle relative to this pedigree?
SIMPLIFY THE PEDIGREE INTO TWO MUTUALLY EXCLUSIVE LOOPS:

\[F \] IS DEFINED IN TERMS OF PROBABILITY OF IDENTITY BY DESCENT FOR A RANDOMLY CHOSEN AUTOSOMAL LOCUS. THERE ARE 7 MEIOTIC EVENTS IN EACH LOOP CONNECTING THE SOLID CIRCLE FEMALE TO HER COMMON ANCESTORS, AND SINCE WE DON’T CARE WHICH ALLELE SHE GETS, EACH LOOP CONTRIBUTES \(2^{(\frac{1}{2})^7} = (\frac{1}{2})^6 = 0.015625 \). SINCE THERE ARE TWO LOOPS WITH THE SAME NUMBER OF MEIOTIC EVENTS, \(F = 0.03125 \) (4 POINTS)

b). What is the probability of identity by descent in the female shown by the solid circle of a randomly chosen X-linked locus relative to this pedigree (recall the laws of transmission for an X-linked locus)?

SINCE THE COMMON ANCESTRAL MALE DID NOT PASS ON HIS X CHROMOSOME TO HIS SON, THE PROBABILITY OF I BY D IN THE RIGHT-HAND LOOP IS 0. IN THE COMMON FEMALE ANCESTRAL LOOP, EVERY TRANSMISSION FROM FATHER TO DAUGHTER HAS A PROB. OF 1, WHEREAS TRANSMISSIONS FROM A FEMALE HAVE A PROB. OF \(\frac{1}{2} \). THERE ARE 5 TRANSMISSIONS IN THIS LOOP WITH \(p = \frac{1}{2} \) AND TWO WITH \(p = 1 \), AND SINCE WE DON’T CARE WHICH ALLELE SHE GETS, THE MATERNAL LOOP CONTRIBUTES \(2^{(\frac{1}{2})^5} = (\frac{1}{2})^4 = 0.0625 \) (4 POINTS)

2. Given the following allele frequencies for an autosomal locus with two alleles (A and a, with \(p \) being the frequency of A) and inbreeding coefficients (measured as a deviation from Hardy–Weinberg proportions in all problems in this set), calculate the genotype frequencies.

<table>
<thead>
<tr>
<th></th>
<th>AA</th>
<th>Aa</th>
<th>aa</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.</td>
<td>0.784</td>
<td>0.032</td>
<td>0.184</td>
</tr>
<tr>
<td>b.</td>
<td>0.469</td>
<td>0.462</td>
<td>0.069</td>
</tr>
<tr>
<td>c.</td>
<td>0.574</td>
<td>0.252</td>
<td>0.174</td>
</tr>
<tr>
<td>d.</td>
<td>0.040</td>
<td>0.720</td>
<td>0.240</td>
</tr>
</tbody>
</table>

2 POINTS

3. Estimate the value of \(f \) for each population given the following genotype numbers.

Genotypes
4. Suppose two populations are polymorphic at an autosomal locus with two alleles, A and a. Suppose population 1 has $p=0.25$ (the frequency of A), and population 2 has $p=0.8$. Both populations avoid inbreeding with $f=0.2$.

a. Suppose you sample 1000 people from population 1 and 1000 people from population 2. What are the expected genotype numbers within each population given f, and what are expected sums for genotype numbers in your combined sample?

<table>
<thead>
<tr>
<th></th>
<th>AA</th>
<th>Aa</th>
<th>aa</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exp freq 1</td>
<td>0.025</td>
<td>0.45</td>
<td>0.525</td>
<td>1</td>
</tr>
<tr>
<td>Exp num 1</td>
<td>25</td>
<td>450</td>
<td>525</td>
<td>1000</td>
</tr>
<tr>
<td>Exp freq 2</td>
<td>0.608</td>
<td>0.384</td>
<td>0.008</td>
<td>1</td>
</tr>
<tr>
<td>Exp num 2</td>
<td>608</td>
<td>384</td>
<td>8</td>
<td>1000</td>
</tr>
<tr>
<td>Exp num sample</td>
<td>633</td>
<td>834</td>
<td>533</td>
<td>2000</td>
</tr>
</tbody>
</table>

3 POINTS

b. What is the f in your combined expected sample? $F = 0.164$ 2 POINTS

c. Suppose that you did not know that the combined sample had been drawn from two distinct populations but rather thought that the combined sample was from a single deme with a single system of mating for this locus. What would you conclude about the system of mating of the sample that you mistakenly regard as a deme for this locus?

The positive f from part b implies either inbreeding or assortative mating. (2 POINTS)

5. All mating pairs in a population are scored at two unlinked, autosomal loci, each with two alleles, and each associated with distinct phenotypes for every genotype, with the following results for each locus:

<table>
<thead>
<tr>
<th>Locus 1 Mates</th>
<th>Freq</th>
<th>Locus 2 Mates</th>
<th>Freq.</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA x AA</td>
<td>0.48</td>
<td>BB x BB</td>
<td>0</td>
</tr>
<tr>
<td>AA x Aa and Aa x AA</td>
<td>0</td>
<td>BB x Bb and Bb x BB</td>
<td>0.1364</td>
</tr>
<tr>
<td>AA x aa and aa x AA</td>
<td>0</td>
<td>BB x bb and bb x BB</td>
<td>0.0455</td>
</tr>
<tr>
<td>Aa x Aa</td>
<td>0.24</td>
<td>Bb x Bb</td>
<td>0</td>
</tr>
<tr>
<td>Aa x aa and aa x Aa</td>
<td>0</td>
<td>Bb x bb and bb x Bb</td>
<td>0.8182</td>
</tr>
<tr>
<td>aa x aa</td>
<td>0.28</td>
<td>bb x bb</td>
<td>0</td>
</tr>
</tbody>
</table>

a. What do you conclude about system of mating for these loci?

The two loci obviously have different systems of mating. Locus 1 shows 100% assortative mating; locus 2 shows 100% disassortative mating. The results cannot be explained by inbreeding or avoidance of inbreeding since they affect all loci. 4 POINTS.

b. What are the equilibrium genotype frequencies for locus 1 if the observed system of mating is continued?
For locus 1, equilibrium frequencies are 0.6 for AA; 0 for Aa; and 0.4 for aa (equation 3.4). 3 POINTS

c. What are the genotype frequencies for locus 2 in the offspring produced by the mating types shown above?

Using Figure 3.8, $G'_{BB} = \frac{1}{2}(0.1364) = 0.0682$; $G'_{Bb} = \frac{1}{2}(0.1364) + 0.0455 + \frac{1}{2}(0.8182) = 0.5227$; $G'_{bb} = \frac{1}{2}(0.8182) = 0.4091$ 3 POINTS