The fourth chromosome: targeting heterochromatin formation in Drosophila

DNA packaging domains

- **Euchromatin**
 - Less condensed
 - Chromosome arms
 - Unique sequences; gene rich
 - Replicated throughout S
 - Recombination during meiosis

- **Heterochromatin**
 - Highly condensed
 - Centromeres and telomeres
 - Repetitious sequences; gene poor
 - Replicated in late S
 - No meiotic recombination

But-
- the banded 1.2 Mb of the dot chromosome contains 82 genes - a normal gene density for the Drosophila chromosome arms
- and a 10-fold higher concentration of repetitious elements
- suggesting interspersed euchromatin and heterochromatin
HP1: a banded pattern on chromosome 4
HP1 distribution is coincident with H3-mK9 but opposed to H4-acK8

\[T_{-1917} hsp26-plant hsp70-white +490 \]

\(P \) element transposon: variegating phenotype
Chromosome four has interspersed heterochromatic and euchromatic domains

*Many variegating reporters lie within genes.

- This variegation is suppressed by loss of HP1.
Mobilization of the P element

Local transposition

Local deletion

Local duplication

Local Deletions Produce a Switch in Eye Phenotype
Local deletions induce a change in chromatin structure

A shift in histone acetylation correlates with shift in eye phenotype
Heterochromatin vs euchromatic domains

- Heterochromatin
 - HP1 complex
 - Methylated histone H3 tail
- Euchromatin
 - HATs
 - Transcriptional activators
 - Acetylated histone tail

Duplications also cause a switch in eye phenotype
Local duplications change the distance between the P element and 1360 remnants

Variegating P inserts lie within 10 kb of a copy of element 1360
Model: element 1360 (hoppel) as an initiator of heterochromatin

A Model for Targeting Heterochromatin Formation
Conclusions

• The fourth chromosome of *D. melanogaster* is largely heterochromatic
 – But 82 genes in 1.2 Mb- normal gene density
 – Ten-fold higher levels of repetitious sequences

• Incomplete transposition of the *P* element on the fourth chromosome
 – Results in local deletions and duplications
 – Can cause a switch in phenotype
 – Argues against a fixed boundary
 – Supports an equilibrium model
 – Suggests competition between alternative packaging states, summed
 by nucleosome modification
 – Proximity to a 1360 associated with heterochromatin formation

• A role for RNAi?
 - mutations in RNAi machinery impact silencing, levels of H3-mK9
 - observe 22 bp dsRNA from 1360
 - suggests RNAi may target assembly of HP1-associated heterochromatin
Our research goal:
To compare finished sequence from the dot chromosomes of *D. melanogaster* with *D. virilis*
Selection of target genes

- Small (dot) chromosome of many Drosophila species is known to have several of the same genes (Podemski, 2001*)
- Sequencing has recently been completed for *D. pseudoobscura*, a species 25-30 my diverged from *D. melanogaster*
- Spring 2003, Rachel Shevchek did a BLAST comparison using cDNA sequences from all the genes from the dot chromosome of *D. melanogaster* to the genomic sequence of *D. pseudoobscura* from the Baylor website
- She looked for >200bp chunks of genes that were very highly conserved (>80%) and designed PCR primers using Primer3 (http://www.broad.mit.edu/cgi-bin/primer/primer3_www.cgi)
- Library screened summer 2004 by Elmer Kellman & Libby Slawson; identified fosmids used in Bio 4342 in spring 2004.

In situ hybridizations

- Ten fosmids confirmed by *in situ* hybridization to the polytene chromosomes of *D. virilis*
- Done in the lab of Dr. Mary-Lou Pardue at MIT
- Will not tell us what gene the fosmid contains, but will tell us where some of the DNA from the fosmid is localized

*example *in situ*, M-L Pardue
Comparison of repeat densities in *D. virilis* (Dv) and *D. melanogaster* (Dm)

- **Dv**
 - Simple Repeats
 - DNA Transposons
 - Retrotransposons

- **Dm**
 - Simple Repeats
 - DNA Transposons
 - Retrotransposons

Percentage of Repetitious DNA (%)

- Dot Chromosomes
- Long Arms
Project Participants

Students ‘04
Jim Bogenpohl, Seth Bloom, James Dee, Emiko Morimoto, Jenny Myoung, Andrew Nett, Fatih Ozsolak, Mandy Tittiger, Andrea Zeug

Faculty and Staff
Sarah Elgin, Prof Biology
Elaine Mardis, Co-Director, GSC & Asst Prof Genetics
Chris Shaffer, Biology, Senior Teaching Fellow
Staff of the Genome Sequencing Center
Jeremy Buhler, Asst Prof Computer Science
Michael Brent, Asso Prof Computer Science
04 TA’s Libby Slawson and Colin Malone
Thanks to Rachel Shevchek, Elmer Kellman, Carolyn Craig, Mary Lou Pardue (MIT), David Lopatto (Grinnell)
and to many other WU faculty & staff for guest lectures.

Big Questions

• As we complete more of the D. virilis dot chromosome, will the same conclusions hold?
 – Gene identity, synteny, evidence of rearrangements?
 – Size of genes, gene density?
 – Levels and kinds of repetitious sequences?

• Given sequence data from other Drosophila species, can we do a better job in defining genes? What about patterns of repetitious sequences?
 – Previous- primarily identified coding regions
 – Start sites for transcription? Regulatory motifs?
 – Will D. mohavaensis look more like D. virilis than D. melanogaster?

• Other features?
 - Should we look for conserved non-coding regions?
 - How does our finished sequence compare to unfinished strain?
 - Other questions?