For Discussion 5…

- Synaptic Release (Ch. 5)
- Neurotransmitter’s and receptors (Ch. 6, pg. 131 good table)
- Synaptic Plasticity (Ch. 24)
 - Short-term changes: Facilitation, summation (temporal, spatial) etc…
 - Long-term changes: LTP, LTD
Synaptic Release

1) AP comes from axon
2) Ca\(^{++}\) enters through V-Ca cells
3) Ca\(^{++}\) binds to proteins causing vesicle fusion
4) Vesicles release Neurotransmitters (NTs)
5) NTs bind to receptors
 1) Ionotropic - ion channels; fast response
 2) Metabotropic - G-protein coupled; slow long-lasting response
6) NTs are degraded in synapse or taken up by nearby cells

NTs (excitatory)

- Acetylcholine (Ach)
 - Where: NMJ, PNS & CNS
 - Receptors:
 - NMJ - ligand-gated ion channel receptors (aka ionotropic, nicotinic)
 - Brain, Heart etc - G-protein coupled receptor (aka metabotropic, muscarinic)
 - Limits of Action:
 - Degraded by acetylcholinesterase
 - Disease - myasthenia gravis (nicotinic Ach receptors targeted by immune system)
NTs (excitatory)

- Glutamate (amino acid)
 - Where (as a NT): CNS
 - Receptors:
 - hippocampus - ionotropic
 - AMPA/Kainate (monovalent channels) and NMDA (divalent channels)
 - brain - G-protein coupled receptor (metabotropic)
 - Limits of Action:
 - Synthesized from glutamine (released from glial cells)
 - Reuptake in the synapse by presynaptic glial cells
 - Elevated levels of glutamate can cause neurotoxicity

NTs (inhibitory)

- GABA (synthesized from glutamate)
 - Where: CNS in interneurons
 - Receptors:
 - Ionotropic (GABA_A)
 - Open Cl\(^-\) channels causing hyperpolarization
 - Site of action of lots of drugs (e.g. benzodiazepines)
 - Metabotropic (GABA_B)
 - GPCR opens K\(^+\) channel or blocks Ca\(^{++}\) channels
 - Limits of Action:
 - Synthesized from glutamate by GAD (glutamic acid decarboxylase)
 - Reuptake in the synapse by presynaptic & glial cells
- Glycine (amino acid)
NTs (other)

- NTs from Tyrosine (amino acid)
 - DOPA (precursor to Dopamine; used in treatment of Parkinson’s disease)
 - Dopamine (DA)
 - Coordination of movements; cells die in Parkinson’s disease; role in addition/reward
 - Coupled to metabotropic receptors
 - Action limited by: MAO (monoamine oxidase) (found in neurons and glia)
 - Norepinephrine/Epinephrine
 - Found in CNS and periphery
 - Act on alpha/beta adrenergic receptors (metabotropic)
 - Receptors can depolarize or hyperpolarize

Fig 6.10

NTs (other)

- NT from Tryptophan (amino acid)
 - Serotonin (aka 5HT)
 - CNS - Raphe nucleus
 - Involved in sleep, wakefulness
 - Action limited by:
 - Reuptake
 - Selective-serotonin reuptake inhibitors (SSRI) target reuptake to treat Depression

Cell bodies in raphe nucleus but the cells’ projections go throughout brain
Synaptic Plasticity

- Definition
 - Idea that a post-synaptic response can change based on timing, type and location of input

- Why do we need synaptic plasticity?
 - Synaptic changes underlie learning/memory, adaptation etc...

- Short-term - facilitation, depression, summation

- Long-term - LTP and LTD
 - Molecular memory or red herring?

Short-term (Facilitation)

- Second AP causes an increase in post response

 Why: Ca++ builds up in presynapse (b/c Ca++ removal mechanisms are slow) causing an increase in vesicle release in response to the 2nd AP
Short-term (Presynaptic Facilitation)

- Prepresynaptic cell causes a presynaptic cell to release more vesicles onto the postsynaptic cell than how much is normally released by the presynapse.
- Why: Ca++ builds up in presynapse (b/c presynapse depolarizes for a longer amount of time with causes more voltage-Ca++ channels to open) causing an increase in vesicle release in response to an AP in the presynaptic cell and the prepresynaptic cell.

Short-term (Depression)

- Second AP causes a decrease in post response.
- Why:
 - Vesicle pool depletion; removal of receptor from PM.
Short-term (Temp Summation)

- Nearly overlapping APs cause increase in EPSP
- Why:
 - Lots of Ca++ in presynapse (lots NTs)

Short-term (Spatial Summation)

- Overlapping APs (from 2 similar cells) cause combinatory change in PSP
- Why: Multiple cells each release NT at synapse
Short-term (Spatial Summation)

- Overlapping APs cancel each other’s effects
- Why: 2 Cells (1 excitatory and 1 inhibitory) each release NTs at synapse

Long-Term (LTP)

- High freq stimulation causes long-term change in EPSP (EPSP increases in response to the same amount of NT release)
- Causes: Insertion of AMPA receptors...
Long-Term (LTD)

Low freq stimulation causes long-term change in EPSP (EPSP decreases in response to the same amount of NT release)

Causes: Removal of AMPA receptors...

Assignments...
- Problem Set 5 (due next Friday)
- Read Chapters 7 & 8 (total Ch. 1-8, 23-24)